BiopC:AMethodforChromatinInteractomeAnalysisofSolidCancerNeedleBiopsy
Samples
SambhaviAnimesh
1*
,RuchiChoudhary
1,2*
,XinYiNg
3
,JoshuaKaiXunTay
4
,WanQin
Chong
3
,BoonCherGoh
1,3,5
,MelissaJaneFullwood
1,2^
1
CancerScienceInstituteofSingapore,CentreforTranslationalMedicine,National
UniversityofSingapore,Singapore
2
SchoolofBiologicalSciences,NanyangTechnologicalUniversity,Singapore
3
DepartmentofHaematologyOncology,NationalUniversityCancerInstituteofSingapore,
NationalUniversityHealthSystem,Singapore
4
DepartmentofOtolaryngology‐Head&NeckSurgery,NationalUniversityHospital,
Singapore
5
DepartmentofPharmacology,YongLooLinSchoolofMedicine,NationalUniversityHealth
System,Singapore,Singapore
*Equalcontribution(Cofirstauthors)
^Correspondingauthor
Abstract
Amajorchallenge in understanding the3Dgenome organization of cancer samples is the lack ofa
methodadaptedtosolidcancerneedlebiopsysamples.HerewedevelopedBiopC,amodifiedinsitu
HiC method, and applied it to characterize three nasopharyngeal cancer patient samples. We
identified TopologicallyAssociated
Domains (TADs), chromatin i
nteraction loops, and Frequently
Interactingregions(FIREs) atkey oncogenes in nasopharyngeal cancerfromBiopC heat maps.Our
resultsdemonstratetheutilityofourBiopCmethodininvestigatingthe3Dgenomeorganizationin
solid cancers, and the importance of 3D genome organization in regulating oncogenes
in
nasopharyngealcan
cer.
Keywords‐HiC,BiopC,chromatinorganization,3Dgenomeorganization,nasopharyngeal
cancer
.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint
Background
Thethreedimensional(3D)genomeorganization of thenucleusplaysavital role in
the regulation of transcription [1,2]. Alterations in 3D genome organization structures
includingTopologicallyAssociatedDomainboundariesandchromatinloopshavebeenshown
toleadtooncogeneexpressionandcancerprogression[1,3–6].
HighthroughputchromosomeconformationcapturetechnologiessuchasHiChave
beenusedtoinvestigatethreedimensional(3D)chromatinconformation[7,8].Thestandard
HiCapproachgenerallyrequiresapproximately1millioncells.Consequently,mostprevious
analyses of cancer samples have been restricted to human cancer cell lines [9–11], but
recently,HiChasbeenconductedonclinicalsamplesfromliquid cancerssuchasTcellAcute
LymphoblasticLeukaemia(TALL)[12]andDiffuseLargeBcellLymphoma(DLBCL) [13]and
onesolidcancer‐gastriccancer [14].Forthesecancers,itispossibletoobtain1millioncells
forexample,gastriccancerscangrowtoalargesize.However,therearemanycancersfor
whichonlyneedlebiopsiesareavailable[15].
Toallowinterrogationofsampleswithmorelimitedquantitiesofstartingmaterials,
therehavebeenseveraleffortstoreducethenumberofcellsrequiredtojust1Kor500cells
usingmodifiedprotocolssuchas
smallscaleinsit
uHiC(sisHiC)[16]andLowC[13].However,
when dealing with solid cancers, a second challenge is that the tissue requires special
preparationinordertodissociatethetissueintosingle cellsforHiCanalysis.Thecoreneedle
biopsiesposethechallengeofboth
l
imitedcellnumbersaswellastherequirementfortissue
dissociation,whichmightleadtofurtherlossordegradationofchromatinforanalysis.Solid
cancersrepresentapproximately90%ofadulthumancancers[17],therefore,aneasytouse
methodforpreparingHiC librariesfromneedlebiopsycancersamples would advanceour
understanding of how chromatin organization contributes to cancer pathogenesis in solid
cancers.
Here,wepresentBiopC,amodifiedinsituHiCmethodforthechromatinanalysisin
solidcancertissuesfromneedlebiopsysamples.TheBiopCmethodhasbeendesignedtobe
usedonsmalltissuesamplesobtainedfromneedlebiopsies.Todemonstratetheutilityof
this method, we analyzed three Nasopharyngeal Cancer (NPC) patient samples. NPC is an
epithelialmalignancy of thenasopharyngealmucosa, and isan aggressive subtypeof head
and neck cancer [18,19,20]. NPCs are further subdivided into three subtypes viz Non
keratinizing
undifferentiated carcinoma, Nonkeratinizing differentiated car
cinoma and
Keratinizingsquamouscell carcinoma. Depending onthe treatment given, thestageof the
cancer,andthesitewherethecancerpresentsat,NPCscanbesmallandanalysedusingcore
needlebiopsies.
It has been established that NPC has a comparatively low mutational
burden, and
oncogenicityis driven by epigen
eticregulation.Typically, NPC associatedwith Epstein Barr
Virus (EBV) are characterized as having comparatively low DNA mutation rates but
widespread DNA hypermethylation and overexpression or mutation of DNA methylation
enzymes,histonemodificationenzymesandchromatinremodellingenzymes[16,17].Hence,
unravellingthe3Dconformational structure will providefurtherinsightintotheepigenetic
regulatory mechanisms that promulgate the NPC phenotype. Here we obtained a
comprehensive understanding of the 3D genome organization of nasopharyngeal cancer
through BiopC analysis, which revealed complex 3D genome organization patterns at
oncogenesimportantinNPC.
.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint
ResultsandDiscussion
AGenomewideMapof3DGenomeOrganizationinNasopharyngealCancer
We applied "BiopC" to analyze three NPC tissue samples, i.e., "S009", "S010", and
"S012".Thetumorcoreswerecollectedbyneedlebiopsiesandimmediatelyflashfrozenin
liquidnitrogen(Fig.S1A).Thetumorcoreswereapproximatelyweighedintherange310mg,
andtheclinicalcharacteristicsofthesamplesarelistedinTableS1.Topreparethetissuefor
analysisof3Dgenomeorganization,weusedaliquidnitrogencooledminimortarandpestle
for the pulverization of tissue within a microtube. This approach kept the biopsy sample
frozenandreducedtheriskofsampledegradation.Additionally,thisapproachalsoprovided
theflexibilityofperformingtheworkflowfromsampleacquisitiontoHiClibrarypreparation
inasinglemicrotube,whichfurtherminimizedpotentialsamplelosses.
Afterpulverization,weprocessedthesampleswithacommerciallyavailableArimain
situHiCkit.Briefly,thechromatinwasfixedwithformaldehydeinthenucleusanddigested
with a restriction enzyme. Then overhangs were filled in with biotinylated nucleotides
followed by proximity ligation. After ligation, crosslinks were reversed, and the DNA was
purifiedfromprotein.Further,thepurifiedDNAwasshearedto~350bpmeanfragmentsize.
Finally, the sequencing libraries were generated using low input swift bioscience Illumina
compatibleadapters(Fig.1A).TheusageoftheminimortarandpestlefollowedbyHiCisthe
keyinnovationoftheBiopCmethod.Whilethisimprovementinsampleprocessingisasmall
change,it is highlyeffectivein generating highqualitychromatininteraction libraries from
needlebiopsyclinicalsamples(Fig.S1B).
Finally,wesequencedBiopClibrariesdeeplybyIlluminanextgenerationsequencing
usingaHiSeq4000machine.Eachlibrarycontainedbetween450Mand922Mcontacts(Table
S2).We obtainedmore than 200million mapped/validjunction reads(>50% oftotal read
pairs)foreachlibrary,reflectingthatourBiopCdatasetsareadequatelycomplex[23](Fig.
1B,TableS2).Furthermore,thelowratiosofthenumberoftranstociscontactsindicatehigh
libraryqualityforallsamples[24](TableS2).Notably,insomesamples(e.g.,S009),onlyone
laneofHiSeq4000sequencingwassufficienttoobtainahighqualityBiopClibrary.
We used Juicer for processing the resulting data, and the package Arrowhead was
usedtoannotateTopologicallyAssociatedDomains(TADs)genomewide,whilethepackage
HiCCUPSwasusedtocallloops[9].HeatmapswerevisualizedwithJuicebox [25].Wewere
abletosuccessfullycallTADsandloopsfromourlibraries(Fig.1B,TableS3&S4).TheTADs
wereclearlyidentifiableataresolutionof10kb.PatientS009had1309TADs,whilepatient
S010had1453TADsandpatientS012had1516TADs(Fig.1B).Loopscouldbeidentifiedat
5kb,10kb,and25kbresolutionsinalldatasets,andtheseloopswereallmergedtogetherfor
subsequent analyses. Patient S009 had 4730 merged loops, while patient S010 had 6539
mergedloops,andpatientS012had2546mergedloops.
Moreover, because Frequently Interacting Regions ("FIREs") are a new type of
chromatin interaction landmark associated with super enhancers and tissue specific
chromatininteractions[40],weusedFIREcallerRpackage[45]tocallFrequentlyinteracting
regions(FIREs).Weidentified2783FIREsinNPCsampleS009,1393FIREsinsampleS010and
2906FIREsinsampleS012fromourBiopCdata.WealsocalledFIREsfromNPCcelllineHK1
andidentified3585FIREs(Fig.1B).
.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint
Next,weexaminedthechromatininteractionsaroundimportantoncogenesinNPC,
such as MYC [26] and epidermal growth factor receptor (EGFR)[27–29] . The cMyc is
overexpressed in 76% ofthe NPC patients.The patients with cMyc positive tumors had a
longerdiseasefreeperiod[26].EGFRishighlyexpressedinnearly85%ofNPCpatientsand
associated with a significantly poorer prognosis in patients with advanced nasopharyngeal
cancerthaninpatientswithoutEGFRoverexpression[28,29].WefoundthatEGFRismarked
bythreesuperenhancersinHK1cellline,twoofthesethreeSE arelocalizedupstream,i.e.,
nearthestarttranscriptionsite,andthethirdoneislocatedinanintron(Fig.S1D).
Finally,forcomparisonwithatypicalHiClibrary,wegeneratedtworeplicatesofHK1
NPC cell line by traditional in situ HiC (Arima kit, [9,30]). Visual inspection of coverage
normalized BiopC heat maps of three NPC tissue samples, and HiC maps of HK1 cell line
showed that the libraries were largely similar to each other, although we also noted that
certainlocicontaineddifferencessuggestingpatientheterogeneitywhichweexplorefurther
in the next section of this manuscript (Fig 1C,1F,1G, S1C, S1IJ). Overall, our successful
detectionofTADs,loopsandFIRESsuggestthatourBiopCmethodcangeneratehighquality
genomewidechromatinconformationmapsfromthesolidtumorneedlebiopsysamples.
Patientheterogeneityinchromatininteractions
The question of patient heterogeneity is relatively unexplored in chromatin
interactionanalyses.InourpreviousresearchinvestigatingchromatininteractionsattheTP53
and MYC loci, we observed that some chromatin interactions at MYC and TP53 could be
detected in bone marrow andperipheral blood samples but not all chromatin interactions
thatareobservedinK562cellsweredetectedinclinicalsamples[31].
To investigate potential patient heterogeneity, we compared the TADs and Loops
between the patients' BiopC heatmaps using the Jaccard Index.We calculated Jaccard's
similaritycoefficient(JaccardIndex,JI)tomeasuretheoverlapbetweenthecalledTADsand
loops in three BiopC matrices. The resulting JI value indicates the fraction of shared TAD
boundariesandloopsbetweenthepatients.Weobservedthat3842%oftheTADsand53
64%ofloopsaresharedinthethreepatients(Fig.S1L).
Next, we examined individual specific chromatin interactions. We found the
chromatin interactions for the genomic locations EGFR, PTPN1, DDIT4, MIR205HG, PDGFA,
MALAT1,CAV2,NOTCH1,TEAD1,TP63,RUNX1,CCAT1,MYC,andYAP1(Fig.S1C)aresimilar
andFOXA1,MIPOL1,SP4,SGCZ,MROH9,FMO1,FMO2, FMO1,FMO4,andFMO6Pgeneare
different(Fig.S1I,J).Inoneexample,weobservedthattwoloopsi.e.loop1andloop2are
present near FOXA1 and MIPOL1 genesin S009 and S012, which are thought tobe tumor
suppressorsinnasopharyngealcancer.However,theseloopswereabsentinS010(Fig1F,G).
InanotherexampleweobservedalooponlyinS009andabsentinS010andS012nearmiR383,
whichisconsideredanexcellentdiagnosticbiomarker forheadandneckcancer[35](Fig.S1J).
Next,aswehadobservedpatient specificchromatininteractions,weinvestigatedthe
tissuespecificityofthesechromatininteractions.Thus,wecharacterizedthesimilaritiesand
thedifferencesbetweentheNPClandscapeandothertissuetypes.WecomparedtheBiopC
heatmapsandtheHiCheatmapfrom HK1withthepreviously published HiC heatmaps in
humancelllinessuchasK562(chronicmyelogenousleukemiacellline),HAP1(nearhaploid
cell line), IMR90 (fetal lung fibroblast cell line), KBM7 (chronic myelogenous leukemia),
HUVEC(humanumbilicalveinendothelialcellline),RPE1(retinalpigmentepitheliumcellline),
GM12878 (lymphoblastoid cell line), NHEK (normal human epidermal keratinocytes), HeLa
.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint
(human cervical carcinoma cell line), HCT116 (colon cancer cell line), HMEC (mammary
epithelialcelllineatarepresentativefourgenomicregions(Fig.S1EH).
WeobservedthattheHiCheatmapsofK562,HAP1,IMR90,KBM7,HUVEC,andRPE1
showasimilarpatternastheBiopCheatmapsofS009,S010,S012,andHK1HiCheatmap
for the genomic locations around MYC and CCAT1, but differences in the profile were
observedinGM12878,NHEK,HeLa,HCT116,andHMEC(Fig.S1E).Thegenomeorganization
atRUNX1locus was sim ilar toourpatient's BiopC heatmapsin K562,HAP1,IMR90, RPE1,
NHEK1, HeLa, HCT116,and HMECbut different in KBM7, HUVEC, and GM12878 (Fig. S1F).
However,thegenomicpatternsforthePTPN1locuswerefoundtobe similarinalltheHiC
andpatient'sBiopCheatmaps(Fig.S1G).Ontheotherhand,thegenomicpatternsforthe
MALAT1locusdidnotshowanysimilarityandweredifferentinalltheHiC,andBiopCheat
maps(Fig.S1H).Weconcludethatcertainchromatininteractionsinnasopharyngealcancer
arecommonacrosstissuetypes(PTPN1)andcertainregionsaretissuespecific(MALAT1).
The observation of patient heterogeneity and tissue specificity in TADs appears to
contradictearlierobservationsthatTADsareprimarilyconservedacrossdifferenthumancell
typesandpossiblyevenacrossdifferentspecies[9,30,36].However,Sauerwaldanalyzed137
HiC samples from 9 studies and observed
significant TAD variations across human cell and
tissuetypes[37]
,suggestingthatwhilethere arecommonTADsandloops,therearealsoTADs
andloopsthatvaryacrosspatientsamplesandtissuetypes.
SuperenhancersareassociatedwithFrequentlyInteractingRegionsandlooptogenes
Super enhancers (SE) are regions of the DNA which enhances the transcription of
targetgenes.Thesearecomprisedofgroupofenhancerswhichareatcloseproximitytoeach
otherandaremarkedbyhighenrichmentofH3K27achistonemodification[38].Inprevious
research,weandothershaveshownthatsuperenhancerscanregulatedistantgenesvialong
rangechromatininteractions[31,39].Moreover,frequentlyinteractingregions(FIREs)have
been reported to form at genomic regions also enriched by super enhancers [40].
Consequently, we wished to understand the relationship between super enhancers and
chromatininteractionsinnasopharyngealcancer.
Asthebiopsysamples
weretoosmallforustoobtainbothH3K27acChIPSeqdataas
wellasBiopCdata,wei
dentifiedSEfromNPCcelllinesHK1,C6661andHNE1usingtheChIP
Seqdatafrom[41]andwefoundthat298SEwerecommoninallthethreecelllines(Table
S5). We reasoned that these "common" su per enhancers that are present in all cell lines
examined will most likely also be present in the patient samples examined.We then used
these common super enhancers andassociated them withchromatin loopsobtained from
theBiopCdataofthepatient
samplesaswellasfro
mtheHiCdataofHK1cellline.Asaresult,
wefoundthattheseSE arehighlyassociatedwithchromatinloops.InsampleS009,S010and
S012,theassociationofSEwithchromatinloopswere54%,57%and41%respectively(Fig.
2A).
Wefurtherobservedthatmorethan90%ofthesechromatinloopsareassociatedwith
genesontheothersideofthechromatinloop.InS009,95%ofSEassociatedchromatinloops
arealsolinkedtodistant genes.InS010aswellasS012,91%ofSEassociatedloopsarelinked
togenes(Fig.2B).
Weal
soassociatedtheseSEtochromatinloopsinoneoftheNPCcellline
HK1andfoundthat92%ofcommonsuperenhancersareassociatedwithchromatinloopsin
HK1and91%oftheseloopslinkSEtodistantgenes(Fig.2A,B,TableS7).Forexample,DDIT4
genewhich
isknowntobeoverexpressedinNPCcelllin
es[41]islinkedtoadistantSEin
patientsampleS010,S012andNPCcelllineHK1(Fig.2C).Wealsorepeatedtheaboveanalysis
.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint
with HK1 super enhancers and found that 85% of HK1 SE were associated with chromatin
loops in HK1 cell line and 94% of these super enhancers were linked to distant genes via
chromatin loops (Supplementary figure S2A, S2B). Next, we categorized SE which were at
closeproximity(lessthan15kbfromagene)toageneandwerecalled"proximal"SEandthe
oneswhichareawayfromthegeneandassociatedviachromatinloopswerecalleddistalSE.
Outof298SEtestedwefound27proximalSEand147distal SEinS009,155distalSEinS010,
110distalSEinS012and260distalSEinHK1(SupplementarytableS7,S8).48geneswere
associatedwithproximalSE(SupplementarytableS8)while356genesinS009,421genesin
S010,291inS012and944genesinHK1wereassociatedwithdistalSE(Supplementarytable
S7).TherewerealsosomegenesthathavebothproximalanddistalSE:InS009wefound10
genes;inS010aswellasS012wefound6genesandinHK1wefound18such genes(Table
S8).Forexample,MACF1geneinallthe3NPCsamplesaswellasHK1celllinehasdistalas
wellasproximalSE(TableS8).WeconcludethatSEarehighlyassociatedwithchromatinloops
todistalgenesinNPC.
Subsequently,wewantedtoassociatetheseSEwithFIREscalled(TableS6)fromthe
BiopCdatafrompatientsamplesaswellasHK1HiCdata.Wecouldrecognize24common
SEinS009,26inS010,31inS012and56inHK1whicharewithinaFIRE.Uponcombiningthe
chromatinloopsdatawithFIREcalling,wefound23SEinS009,32insampleS010,30inS012
and69SEinHK1celllinethatloopstoaFIRE(Fig.2D,TableS9).WealsofoundSE whichfall
withinthesameFIREasanoncogenelikePTPN1whichisalsoknowntobeoverexpressedin
NPCcelllines[41](Fig.2E)aswellasSEwhichloopstoadistantFIREcontainingARF6gene
whoseoverexpressioncanbecorrelatedwithmetastasisandinvasioninseveralcancers[42].
WeconcludethatSEareassociatedwithFIREsinNPC.
Taken together, our new BiopC method is suitable for interrogating needle biopsy
patient samples, and more generally, situations of limited tumor sampling when surgical
biopsiesmaybetechnicallydifficult.UsingBiopC,weexaminedchromatininteractionsin3
nasopharyngeal cancer patient samples, which allowed us to identify super enhancers
associatedwithFIREsandwhichlooptoimportantoncogenes.Wealsodemonstratedpatient
heterogeneityinchromatininteractionsinthesepatientsamples,aswellastissuespecificity.
HiC libraries from an NPC cell line, HK1, showed differences compared with chromatin
interactionsinthepatientsamples.Thesedifferencescouldariseduetodifferentsubtypeof
NPC. Our results indicate the necessity of interrogating chromatin interactions in actual
patientcancers,whichBiopCenables.Ourresultsdemonstratetheutilityandimportanceof
BiopC as a method for understanding cancer 3D genome organization. In the future, we
anticipate that the versatility of BiopC will also allow us to interrogate perturbations of
chromatingeneregulationinpatientsundergoingtherapeuticinterventions.
Methods
DetailedmethodsaregivenintheSupplementaryMaterials.Briefly,thebiopsysampleswere
obtainedfromNPCpatientsusingan18gaugeneedleandflashfrozen.Thefrozensamples
were subjected to the BiopC method for the generation of the BiopC matrix. HK1 were
culturedat5%CO2at37°CinRoswellParkMemorialInstitute(RPMI)1640media(Hyclone)
supplemented with 10% heatinactivated Fetal Bovine Serum (FBS; Hyclone) and 1%
penicillin/streptomycin(Hyclone).TheHiCheatmapsofHK1werepreparedusingArimaHiC
kitandsequenced150basespairedendontheIlluminaHiSeq4000.HiCdatawerealigned
andprocessedbyJuicer(version1.5.7)[9].Thereferencegenomewashg19.Theheatmaps
arevisualizedusingJuicebox[25].
.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint
Datadeposition
WeareintheprocessofsubmittingourdatatoGEO,dbgapandcontrolledshortreadarchive.
Dataavailability
Allrelevantdatasupportingthekeyfindingsofthisstudyareavailablewithin thearticle and
itsSupplementaryInformationfilesorfromthecorrespondingauthoronreasonablerequest.
Acknowledgements
ThisresearchissupportedbytheNationalResearchFoundation(NRF)Singaporethroughan
NRFFellowshipawardedto M.J.F(NRFNRFF2012054)and NTUstartupfundsawardedto
M.J.F.ThisresearchissupportedbytheRNABiologyCenterattheCancerScienceInstituteof
Singapore, NUS, as part of funding under the Singapore Ministry of Education Academic
Research Fund Tier 3 awarded to Daniel Tenen (MOE2014T31006). This research is
supported by the National Research Foundation Singapore and the Singapore Ministry of
EducationunderitsResearchCentresofExcellenceinitiative.
Authorcontributions
S.A. and M.J.F conceived the research idea. M.J.F, S.A., and R.C. contributed to the study
design.S.A. and R.C.performedbioinformaticsanalysis of theHiC.S.A.performedmanual
curationoftheHiCdata.R.CperformedFIREcallingandChIPSeqanalysisonpublisheddata
toidentifyS.E.sandtheirloopingpatternsinNPC.X.Y,J.T.,WQ.CandB.C.G.providedNPC.
clinicalsamples.S.A.,R.C,andM.J.Freviewedthedata.S.A.,R.C,B.C.G.andM.J.Fwrotethe
manuscript.Allauthorsreviewedandapprovedthemanuscript.
Competinginterests
M.J.FdeclarestwopatentsonmethodologiesrelatedtoChIAPET.Nootherconflictsof
interestaredeclared.
References:
1.HniszD,WeintrauAS,DayDS,ValtonAL,BakRO,LiCH,etal.Activationofproto
oncogenesbydisruptionofchromosomeneighborhoods.Science.2016;351:1454–8.
2.HniszD,SchuijersJ,LiCH,YoungRA.RegulationandDysregulationofChromosome
StructureinCancer.Annu.Rev.CancerBiol.2018;2:21–40.

3.LiL,BarthNKH,PilarskyC,TaherL.Cancerisassociatedwithalterationsinthethree
dimensionalorganizationofthegen
ome.Cancers.2019;11.
4.ValtonAL,DekkerJ.TADdisruptionasoncogenicdriver.Curr.Opin.Genet.Dev.Elsevier
Ltd;2016.p.34–40.
5.FlavahanWA,DrierY,LiauBB,Gillespie
SM,Venteich
erAS,StemmerRachamimovAO,et
al.InsulatordysfunctionandoncogeneactivationinIDHmutantgliomas.Nature.
2016;529:110–4.
6.FudenbergG,GetzG,MeyersonM,MirnyLA.Highorderchromatinarchitectureshapes
thelandscapeofchromosomalalterationsincancer.Nat.Biotechnol.2011;29:1109–13.
7.LiebermanAidenE,VanBerkumNL,WilliamsL,ImakaevM,RagoczyT,TellingA,etal.
Comprehensivemappingoflongrangeinteractionsrevealsfoldingprinciplesofthehuman
genome.Science.2009;326:289–93.
8.vanBerkumNL,LiebermanAidenE,WilliamsL,ImakaevM,GnirkeA,MirnyLA,etal.Hi
C:Amethodtostudythethreedimensionalarchitectureofgenomes.J.Vis.Exp.
2010;39:1869.
.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint
9.RaoSSP,HuntleyMH,DurandNC,StamenovaEK,BochkovID,RobinsonJT,etal.A3D
mapofthehumangenomeatkilobaseresolutionrevealsprinciplesofchromatinlooping.
Cell2014;159:1665–80.
10.HaarhuisJHI,vanderWeideRH,BlomenVA,YáñezCunaJO,AmendolaM,vanRuiten
MS,etal.TheCohesinReleaseFactorWAPLRestrictsChromatinLoopExtension.Cell.
2017;169:693707.
11.DarrowEM,HuntleyMH,DudchenkoO,StamenovaEK,DurandNC,SunZ,etal.Deletion
ofDXZ4onthehumaninactiveXchromosomealtershigherordergenomearchitecture.
Proc.Natl.Acad.Sci.U.S.A.2016;113:E4504–12.
12.KloetgenA,ThandapaniP,NtziachristosP,GhebrechristosY,NomikouS,LazarisC,etal.
ThreedimensionalchromatinlandscapesinTcellacutelymphoblasticleukemia.Nat.Genet.
2020;52:388–400.
13.DíazN,KruseK,ErdmannT,StaigerAM,OttG,LenzG,etal.Chromatinconformation
analysisofprimarypatienttissueusingalowinputHiCmethod.Nat.Commun.2018;9:1–
13.
14.OoiWF,NargundAM,LimKJ,ZhangS,XingM,MandoliA,etal.Integratedpairedend
enhancerprofilingandwholegenomesequencingrevealsrecurrentCCNE1andIGF2
enhancerhijackinginprimarygastricadenocarcinoma.Gut.2020.;69:1039–52.
15.LinF,ZhangJ,LiuH.Handbookofpracticalfineneedleaspirationandsmalltissue
biopsies.Handb.Pract.FineNeedleAspirationSmallTissueBiopsies.2017;1–496.
16.DuZ,ZhengH,HuangB,MaR,WuJ,ZhangX,etal.Allelicreprogrammingof3D
chromatinarchitectureduringearlymammaliandevelopment.Nature.2017;547:232–5.
17.SocietyAC.AmericanCancerSociety.CancerFacts&Figures2020.Am.CancerSoc.
2020;1–52.
18.YuMC,YuanJM.Epidemiologyofnasopharyngealcarcinoma.Semin.Cancer
Biol.2002;421–9.
19.DaiW,ZhengH,CheungAKL,LungML.Geneticandepigeneticlandscapeof
nasopharyngealcarcinoma.ChineseClin.Oncol.2016;5:4–4.
20.LiM,CheungAKL,YeeKoJM,LungHL,ChengY,DaiW.Theinterplayofhostgenetic
factorsandEpsteinBarrvirusinthedevelopmentofnasopharyngealcarcinoma.Chin.J.
Cancer.2014;566–8.
21.TsangCM,LuiVWY,BruceJP,PughTJ,LoKW.Translationalgenomicsofnasopharyngeal
cancer.Semin.CancerBiol.2020;61:84–100.
22.DaiW,CheungAKL,
KoJMY,ChengY,ZhengH,NganRKC
,etal.Comparativemethylome
analysisinsolidtumorsrevealsaberrantmethylationatchromosome6pinnasopharyngeal
carcinoma.CancerMed.2015;4:1079–90.
23.LajoieBR,DekkerJ,KaplanN.TheHitchhiker’sguidetoHiCanalysis:Practical
guidelines.Methods.2015;72:65–75.
24.NaganoT,VárnaiC,SchoenfelderS,
JavierreBM,Winget
tSW,FraserP.Comparisonof
HiCresultsusinginsolutionversusinnucleusligation.GenomeBiol.2015;16:175.
25.DurandNC,RobinsonJT,ShamimMS,MacholI,MesirovJP,LanderES,etal.Juicebox
ProvidesaVisualizationSystemforHiCContactMapswithUnlimitedZoom.Cell
Syst.2016;3:99–101.
26.YuY,DongW,LiX,YuE,ZhouX,LiS.SignificanceofcMycandBcl2ProteinExpression
inNasopharyngealCarcinoma.Arch.Otolaryngol.‐HeadNeckSurg.2003;129:1322–6.
27.RuanL,LiXH,WanXX,YiH,LiC,LiMY,etal.AnalysisofEGFRsignalingpathwayin
nasopharyngealcarcinomacellsbyquantitativephosphoproteomics.Proteome
.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint
Sci.2011;9:35.
28.ChuaDTT,NichollsJM,ShamJST,AuGKH.Prognosticvalueofepidermalgrowthfactor
receptorexpressioninpatientswithadvancedstagenasopharyngealcarcinomatreatedwith
inductionchemotherapyandradiotherapy.Int.J.Radiat.Oncol.Biol.Phys.;2004;59:11–20.
29.FujiiM,YamashitaT,IshiguroR,TashiroM,KameyamaK.Significanceofepidermal
growthfactorreceptorandtumorassociatedtissueeosinophiliaintheprognosisofpatients
withnasopharyngealcarcinoma.AurisNasusLarynx.2002;29:175–81.
30.DixonJR,SelvarajS,YueF,KimA,LiY,ShenY,etal.Topologicaldomainsinmammalian
genomesidentifiedbyanalysisofchromatininteractions.Nature.2012;485:376–80.
31.CaoF,FangY,TanHK,GohY,ChoyJYH,KohBTH,etal.Superenhancersandbroad
h3k4me3domainsformcomplexgeneregulatorycircuitsinvolvingchromatininteractions.
Sci.Rep.2017;7:1–14.
32.AmmousBoukhrisN,AyadiW,DerbelM,AllayaJaafarN,CharfiS,DaoudJ,etal.FOXA1
ExpressioninNasopharyngealCarcinoma:AssociationwithClinicopathological
CharacteristicsandEMTMarkers.BiomedRes.Int.2020;2020.
33.LeongMML,CheungAKL,KwokTCT,LungML.Functionalcharacterizationofacandidate
tumorsuppressorgene,MirrorImagePolydactyly1,innasopharyngealcarcinoma.Int.J.
Cancer.2020;146:2891–900.
34.KwokA,CheungL,LungHL,MunJ,KoY,ChengY,etal.Chromosome14transferand
functionalstudiesidentifyacandidatetumorsuppressorgene,Mirrorimagepolydactyly1,
innasopharyngealcarcinoma.ProcNatlAcadSciUSA.2009;106(34):1447883.
35.LiuC,YuZ,HuangS,ZhaoQ,SunZ,FletcherC,etal.Combinedidentificationofthree
miRNAsinserumaseffectivediagnosticbiomarkersforHNSCC.EBioMedicine.2019;50:135–
43.
36.JinF,LiY,DixonJR,SelvarajS,YeZ,LeeAY,etal.Ahighresolutionmapofthethree
dimensionalchromatininteractomeinhumancells.Nature.2013;503:290–4.
37.SauerwaldN,SinghalA,KingsfordC.Analysisofthestructuralvariabilityoftopologically
associateddomainsasrevealedbyHiC.NARGenomicsBioinforma.2020;2:1–13.
38.PottS,LiebJD.Whataresuperenhancers?Nat.Genet.2015.8–12.
39.SeeYX,WangBZ,FullwoodMJ.ChromatinInteractionsandRegulatoryElementsin
Cancer:FromBenchtoBedside.TrendsGenet.2019;35:145–58.
40.SchmittAD,HuM,JungI,XuZ,QiuY,TanCL,etal.ACompendiumofChromatinContact
MapsRevealsSpatiallyActiveRegionsintheHumanGenome.CellRep.2016;17:2042–59.
41.KeL,ZhouH,WangC,XiongG,XiangY,LingY,etal.Superenhancerspromote
transcriptionaldysregulationinnasopharyngealcarcinoma.Proc.Natl.Acad.Sci.U.S.A.
2017;77:6614–26.
42.LiR,PengC,ZhangX,WuY,PanS,XiaoY.RolesofArf6incancercellinvasion,
metastasisandproliferation.LifeSci.2017;1;182:8084.
43.KeL,ZhouH,WangC,XiongG,XiangY,LingY,etal.Nasopharyngealcarcinomasuper
enhancer–drivenETV6correlateswithprognosis.Proc.Natl.Acad.Sci.U.S.A.
2017;114:9683–8.
44.KentWJ,SugnetCW,FureyTS,RoskinKM,PringleTH,ZahlerAM,etal.TheHuman
GenomeBrowseratUCSC.GenomeRes.2002;12:996–1006.
45.Crowley,C.,Y.Yang,Y.Qiu,B.Hu,H.Won,B.Ren,M.HuandY.Li(2019)."FIREcaller:an
RpackagefordetectingfrequentlyinteractingregionsfromHiCdata."bioRxiv:619288.
.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint
Fig1
.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint
Fig 1: Biop C method enables the study of highresolution 3D Genome organization and
chromatininteractomeinsolidtumorsamples(A)SchematicoverviewoftheBiopCmethod.
Thefrozenneedlebiopsytissueispulverizedinaliquidnitrogencooledminimortar,andthen
chromatin was fixed with formaldehyde in the nucleus. The samples were processed with
commercial Arima genomics HiC Kit. Fixed cells were permeabilized using a lysis buffer
suppliedinArimaHiCkitandthen digestedwitharestrictionenzyme.Followingrestriction
digestion,thesiteswerefilledinwithbiotinylatednucleotides.TheresultingDNAbluntends
weresubsequentlyligated.Afterligation,crosslinkswerereversedtoremoveproteinsfrom
DNA. HiC material was then sonicated using a Covaris FocusedUltrasonicator M220
instrument to achieve fragment sizes of 300500 bp. The sonicated DNA was doublesize
selectedusingAmpureXPbeads,andthesequencinglibrariesaregeneratedusinglowinput
SwiftBioscienceIlluminacompatibleadapters(B)TableofstatisticsofBiopCandHiCdata.
#HiC contacts indicates number of mapped/valid junction reads of each library. #TAD
indicates
the number of TADs called from BiopC and HiC data at 10kb resolution. #Loops
indicatesthetotalnumberofloopscalledfromBiopCandHiCdataat5kb,10kb,and25kb
resolutionandthenmerged.#FiREsindicatesthenumberofFIREscalledfromBiop
CandHi
Cdataat10kbresolution.(C)BiopCandHiChe
atmapshowing3Dgenomeorganisationat
CCAT1 andMYC gene.
Genes are indicated in blackcolor. The “common superenhancers”,
showninbluecolor,indicatethesuperenhancerspresentinallthreeNPCcelllines‐HK1,C66
1,andHNE1celllines.ThesuperenhancerspresentinHK1celllinesareindicatedinredcolor.
ThesuperenhancerdatasetsareobtainedfromKeetal.2017[43](D)Venndiagramshowing
theoverlapofTADboundariesbetweenthepatientsinferredusingtheArrowheadalgorithm
[9]at10kbresolution.(E)VenndiagramdepictingtheoverlapofLoopsbetweenthepatients.
TheloopswerecalledusingtheHiCCUPsalgorithm[9]at5kb,10Kb,and25Kbresolution.The
loopsofthedifferentresolutionsweremergedforthisanalysis.(F)ZoomedviewofBiopC
Juiceboxvisualized heat map of S009, S010, and S012 showing patient heterogeneity in
chromatin interaction at FOXA1 and MIPOL1 gene. (G) UCSC genome browser [44]
screenshotsofgenomiccoordinateschr14:36,459,96642,220,035.Loops1and2arepresent
inS009&S012,whileloop3ispresentonlyin S010.Loop1,Loop2,andLoop3arerepresented
ingreen,blue,andblackcolors,respectively.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint
Fig2
.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint
Fig2:Associationofsuperenhancerswithchromatininteractionsandgenes.(A)Graphshowingthe
numberofcommonSEassociatedwithchromatininteractionsinNPCpatientsampleS009,S010,S012
and cell line HK1 (blue) and number of SE which are not associated with chromatin interactions
(orange)(B) graph showing number
of SEassociated with distant genes via chr
omatin loops in NPC
patientsampleS009,S010,S012andcelllineHK1(darkblue)andnumberofSEwhichdonotlinkto
distantgenesviachromatinloops (lightblue)(C)BiopCheatmapsforNPCsampleS009,S010,S012
andHic heatmap for
cell li
neHK1 fortheDDIT4 ge ne locus where aSElinkstothegenethrougha
chromatinloop(D)graphshowingthenumberofSEassociatedwithFIREsviachromatinloop(green)
andSEwhicharewithinFIRE(yellow)(E)BiopCheatmaps forNPCsampleS009,S010,S012
andHic
heatmapforcelllineHK
1showingaSE(blue:comm onSE,red:HK1SE)andPTPN1genewithinthe
sameFIRE(F)BiopCheatmapsforNPCsampleS009,S010,S012andHicheatmapforcelllineHK1
showingaSEloopingtoFIREattheARF6genelocus.
.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426176doi: bioRxiv preprint